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Abstract-Consideration is given to heat transfer in a developed laminar incompressible flow with constant 
physical properties in a two-dimensional channel with porous walls having constant temperature. Several 
asymptotic solutions of the energy equation for small and large wall Peclet numbers and large Prandtl 
numbers are obtained. The computed results of the lpcal Nusselt number distribution in both the thermal 
stabilization and channel entrance regions are generalized for all Prandtl numbers by a single relation in the 

form of the relative heat transfer law. 
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axial and transverse coordinates ; 
axial and transverse velocity 
components; 
mean velocity at the channel entrance; 
duct half-width; 
temperature; 
inlet and wall temperature, respectively; 
kinematic viscosity ; 
thermal diffusivity; 
= v/a, Prandtl number ; 
suction or injection velocity (positive for 
suction); 
= Vh/v, Reynolds number; 
= 2Vh/u, suction or injection Peclet 
number ; 

= 1 Pe,I, suction or injection rate; 
= y/h, dimensionless transverse 
coordinate; 
= xa/h*U,, dimensionless axial 
coordinate ; 
dimensionless axial coordinate; 
= (T- T,)/(T, - T,), dimensionless 
temperature ; 
bulk temperature ; 
Nusselt number; 
velocity functions; 
distance from the axis wheref = 0; 
eigenfunctions; 
eigenvalues ; 
constants ; 
coefficients in equation (22); 
relative heat transfer coefficient and suc- 
tion (injection) parameter, respectively; 

Co, C, B,, K, Integration constants. 

Subscripts 
in, injection ; 
s. suction ; 
n, tn. k, 1, number of the term in expansion. 

NOMENCLATURE 
1. INTRODUCTION 

SINCE the publication of Berman’s work [l], the 
problems of liquid flow in channels and pipes with 
porous wails have received much attention from 
investigators due to increasing use of suction and 
injection in modern technology. 

Heat transfer in laminar flow through circular tube 
with injection was first discussed in [2] subject to the 
boundary conditions of the first kind. The energy 
equation was solved by the method of separation of the 
variables, with the eigenvalue problem being in- 
tegrated by expanding the eigenfunctions into a power 
series along the radial coordindte. In [3, 41, the 
methods of the perturbation theory were employed to 
find the first eigenfunction of the respective 
Sturm-Liouville problem at low and high suction or 
injection rates. Calculations of stabilized heat transfer 
in a circular tube were carried out in [S] and extended 
to the thermal entrance region in [6]. Numerical 
solutions of the energy equation by the Fourier 
method for circular tubes and two-dimensional rec- 
tangular ducts at boundary conditions of the first and 
second kinds, as well as a number of asymptotic 
expansions of the solution for strong injection were 
obtained in [7]. Calculations of heat transfer for the 
thermal entrance region of a two-dimensional channel, 
with hydrodynamic flow stabilization and without, 
were obtained by a finite-difference method in [8, 91. 
The influence of variable physical properties of the 
fluid on heat transfer in a two-dimensional flat channel 
is studied in [lo]. Analytical solutions of the linearized 
motion and energy equations were given in [ 1 l] as a 
series of eigenfunctions expressed in terms of hyper- 
geometrical functions. 

In this work, asymptotic solutions of the energy 
equation have been obtained which make it possible 
from the results of numerical calculations to establish a 
correlation between the relative heat transfer coef- 
ficient and the suction (injection) parameter. 
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2. THE SOLUTION BY THE METHOD OF 
SEPARATION OF THE VARIABLES 

The energy equation for a steady-state flow of 
incompressible fluid with constant physical properties 

in a planeeparallel channel without regard for axial 

heat conduction is 

dT i?T d2T 
ux$%‘y=ap (1) 

In the case of axial symmetry, with the temperature 
at the inlet cross-section and channel walls being 

constant, the boundary conditions are 

x=0 T=T,, y=Og= 0, y=h T=T,.(2) 

The axial and transverse velocities for hydro- 

dynamically stabilized flow may be expressed in terms 

of a single function F(q; R) [I] 

u,=(U,-v~x/h)F’(~), uy=V.F(q) (3) 

where F is found by solving the ordinary differential 

equation 

F”’ + R(FF” - F’*) = K 
(4) 

q=o F=F”=O, q=l F’=O FE,. 

At small values of the parameter R, the solution of 
equation (4) can be given as the following expansion 

PI 
0’~; RI = Fob) + RF,h)+O(R2), (5) 

where 

corresponds to plane Poiseuille flow. 
Taking into account equation (3), the energy equa- 

tion (1) can be written in terms of dimensionless 

variables as 

Let us transform equation (6) from the coordinate x 

to a new axial variable 

Z= -&ln[l -y) (7) 

changing from 0 to K for both injection and suction. 
The relationship between the variables z and X is 
shown in Fig. 1. 

Then, equation (6) subject to the boundary con- 
ditions (2) will be written as 

a0 
z=o e=1, n=o -=o,n= 1 Q=O. 

all 

(8) 

I 

0 x5 Z/P Xa 4/P xia 610 
X 

FIG 1. The relationship between the variables z and X 

2 dB 
Nu = _ -- - 

0 0, aq V=l’ 

where 

Ob = OF’ dr) 

is mean flow bulk temperature which changes along 
the channel length according to the one-dimensional 
energy conservation equation 

de, U%-Nu) H, 

dz= 2 b 

The solution of the energy equation 
presented as a series of eigenfunctions 

0 = : A, R(q) exp (-U) 
II=1 

(9) 

(8) can be 

(10) 

where @‘. and p,, are found from the solution of the 
Sturm-Liouville problem 

By inserting 

(12) 

into equation (1 l), we obtain the following eigenvalue 

problem to determine 4, and p. 

MO) = Ml) = 0. (13) 

The constants A, in (10) are found from the expression 

At high Prandtl numbers, Pr D 1, and the Peclet 
numbers for injection (suction) that meet the condition The Nusselt number is determined from 
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PjPr << 1, injection or suction has a minor effect on the 
flow hydrodynamics, since the parameter R = Pe,/2Pr 
in this case is small, it is possible to disregard all terms 
after the first one in equation (S), i.e. to assume that 
F=F,. This allows one to establish a correlation 
between the solutions of the energy equation for 
suction and injection occurring at the same rate, that is 
at the same values of P. As seen from equation (13), the 
only difference between the suction and injection at the 
same values of P lies only in the sign in front of the Pin 
,u,, + PeJ4. It follows from equation (13) that at high 
Prandtl numbers, when F is independent of Pe,, the 
eigenfunctions and eigenvalues for suction and in- 
jection of the same intensity are related as 

Taking into account equation (14) one can establish 
a correlation between the bulk temperatures and local 
Nusselt numbers for suction and injection that cor- 
respond to the same value of P 

B,_(z;Pf= 1 -expi-@)[1-8,(i:P)] (15) 

Nu,,(z ; P) = Nu,(z ; P) - P. (16) 

The relationship between 0, and Nu in equations 
(15) and (16) is valid at equal values of z on the left- and 
the right-hand side in the equations which corresponds 
to different X, and X, (Fig. 1) related by 

x, = X* 
1- PXJ2. 

Consider the solution of the energy equation at low 
velocities of suction and injection when the term of the 
order of Pez in equation (13) can be neglected. Then 
equation (12) is solved as 

From equation (17) one can determine the Nusselt 
number at low values of Pe, 

Nu(z ; Pe,, R) = Nu,(z ; R) $ : i19) 
where Nu, is found by solving the energy equation 
without regard for the transverse convection 

The coupling between X and X, (Fig. l), to which 
Nu and Nu, in (19) should be retated, is determined by 

X = ~[l-expi-~)I. (21) 

Thus, equations (17) and (19) allow one to express 
the temperature distribution and Nusselt number at a 
small value of Pe, in terms of the characteristics of a 
more simple problem (18) or (20). For the Poiseuille 
velocity profile the values of $,,, pnr,, A,, and Nu are 
found from the solution of the Nusselt-Graetz plane 
problem [12]. 

Let us now pass to the solution of the problem for 
strong suction or injection. We shall derive the ex- 
pressions for thl first eigenfunctions and eigenvalues in 
extreme cases of Pe, + f ~4. Equation (11) will then 
contain a small parameter at the higher derivative 
l/Pe,. Since at P + r) the order of the differential 
equation decreases, there is no need for the extreme 
eigenfunctions to satisfy the two boundary conditions 
in (11). In order to determine the limiting eigenfunc- 
tions a>; and eigenvalues p(:, these can be given as a 
series in a small parameter 

-k 

&. (22) 

Substituting (22) into (11) and equating the terms 
with the like powers of Pe, we obtain a chain of 
equations to find ok and gk 

F$ - g,F’o, = 0 

xexp[-(#&,-$+] (17) F~-g,F’wk=~+g,fiu. 

where 

A,, = Joi F’#,,,dp,/J; F’dtfdlt 

and &, and pno are eigenfunctions and eigenvalues of 
the following Sturm-Liouville problem 

* 
d112 + /&,F’&,=O, &l,(O)=&,(1)=0. (18) 

The eigenvalues pL, in the first linear approximation 
on Pe, are related to p,, through 

Pe 
.& = &i, - .-...K. 

4 

1 +n=k 

+F’ c glwn, k&l. (24) 
I.ll=Ci 

For suction, the solution of equation (23) is 

“0, = C,, 9” = 0. 

Then, from (24) we find 

WI% = g1 In F + Cl, 

and since F(0) = 0, it follows that gls = 0. Similarly, it 
can be shown that gk, = 0 at k > 2. 

In the case of injection, equation (23) is satisfied, 
with due regard for the rules of differentiation of 
generalized functions [13], by the &function 
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%. = &J(?), go,” = - 1. 

From (24) we obtain 

I 
1 1 

Qw = Fo& dq + 
0 

Hence g, = 0, since F’(0) # 0; in a similar fashion 

we can find” that gk,. = 0 at k > 2. 
Thus, all the first eigenfunctions normalized to 

J* 

1 
aldq = 1 

0 

are located between two extreme profiles; Q1 = 1 at 

Pe, + x and @, = 6(q) at Pe, + - z. The 

eigenvalues ~‘1 are determined by the asymptotic 

expressions 

Pe, 
pl = o(Pe,:“) at Pe, + cI_, pl = - 2 

+ o(Pe;“) at Pe, -+ - cc (25) 

wheren = 0, 1,2 ,.... 

It follows from (25) that with the growth of P, pl 
very rapidly approaches its extreme values equal to 
zero for suction and - Pe,/2 for injection. It can be 
shown that the law governing this approach has an 

exponential character. 
In order to derive asymptotic expressions for eigen- 

functions and eigenvalues at any n in the case of 
strong suction or injection, we shall use the WKB 

method [14]. At large P the function in the square 
brackets in equation (13) 

vanishes at a small distance from the axis 

(26) 

Assuming that within the region 6 < 9 < 1, wheref 
< 0, an exponentially increasing term is lacking in the 
solution of equation (13), we set 

[ - j;&f)dLj. (27) 

Equation (27) conforms asymptotically to the boun- 

dary condition 4,(l) = 0 with an accuracy of exp 
(- P)/Pl”. In the range 0 < q < S, the solution of 
equation (13), matched with (27), has the form 

f#l,=~cos 
4f CS q’JWb - i-j. (28) 

The solution (28) should satisfy the boundary 

condition &JO) =O. Hence, accounting for f’(O) =0 
we obtain 

sin 1 =0 

or for (26) 

From equation (29), we find the limiting expression 
for the eigenvalues 

P-Pe, 
lim pn = 4 ----+ (n-1)P. 
P-1 

(30) 

As follows from (30), p, is independent of the 
velocity distribution (F function) at P + rl, and 
depends only on the suction or injection rate and the 

ordinal number n. 
The results of numerical solution of equation (13) 

obtained for the Poiseuille velocity profile confirm the 
asymptotic expression (30) shown by dashed lines in 

Fig. 2. Figure 3 depicts the first three eigenfunctions of 
equation (13); it is seen that at high values of P the 
region of oscillating &, shifts toward the axis, while in 
the wall region 4. + 0. The nature of the obtained 
distribution of eigenfunctions agrees well with the 
asymptotic solutions (27) and (28). 

Equations (25) and (30) yield the relationships for 
Nu under intense suction or injection 

Nu = Pe,. + o(Pe,“) at Pe, +rc, 
(31) 

Nu = o(Pe,Y”) at Pe, -+ - X, 

wheren = 0, 1,2 ,.... 
Equations (31) specify the limiting functions for Nu 

derived in [4]. 

3. CALCULATION BY THE FINITE-DIFFERENCE 

METHOD 

In order to obtain a numerical solution of equation 

(8), an implicit two-layer, six-point difference scheme 
was employed with the use of the factorization method 
for each layer. The function F was determined by 

integrating equation (4). 
Figure 4 shows the calculated local Nusselt number 

at different values of the parameters Pe, and Pr. With 

FIG. 2. Dependence of eigenvalues on the parameter P. 
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FIG. 3. Distribution of eigenfunctions. 

FIG. 4. Variation of Nu number along the channel. 

an increasing injection rate the Nu number tends 
asymptoticaily toward zero for all z, while with an 
increasing suction rate it approaches Pe, which agrees 
with (31). The curves I in Fig. 4 show the boundaries of 
the thermally stabilized region found from the con- 
dition Nu = 1.01 Nu,. 

The larger effect of the decreasing Pr number on Nu 
is attributed to a rise in the parameter R = Pe,/ZPr at a 
fixed Pe,. In the case of suction the fullness of the axial 
velocity profile increases with R [15], on account of 
which for lower values of Pr there are higher values of 
Nu. On the other hand, in the case of injection the 
fullness of the profile somewhat decreases as compared 
to the Poiseuille one, though not much, which is 
responsible for the reversed effect of Pr on Nu. As seen 
from Fig. 4, Nu, is actually independent of Pr (or R) in 
the thermally stabilized region at Pr > 0.7 which was 
also pointed out in [7]. In the thermal entrance region 

at low Prandtl numbers this effect can be substantial 
for suction, but as soon as Pr > 5 it becomes 
insigni~cant. 

Figure 5 shows variation in the fluid bulk tempera- 
ture along the channel. In the case ofinjection, S, drops 
more abruptly than it does in a channel with imperme- 
able walls which is accounted for by some additional 
loss of heat by the main flow for heating the cold 
injected liquid (if the temperature at the channel inlet 
exceeds that of the wall). Conversely, in the case of 
suction the liquid, which leaves the channel at the wall 
temperature, gives up, according to (9), the excess of 
heat Pe,tl,/2 to the main flow and &, varies more slowly 
than in a channel with impermeable walls. According 
to (9), at a high suction rate, Nu -+ Pe,, the bulk 
temperature changes hardly at all, and over the whole 
channel, except for a narrow wall region, there is 
virtually an isothermal flow with a temperature equal 
to that at the channel inlet. 

4. THE RELATIVE HEAT TRANSFER COEFFICIENT 
AS A FUNCTION OF THE SUCTION 

(INJECTION) PARADE-rER 

In the theory of a turbulent boundary layer wide 
usage has been gained by the relative law of heat and 
mass transfer $ =f(b) [16], where I++ = NM/NM, is the 
relative heat transfer coefficient, b = PeJNu, is the 
suction or injection parameter and Nu, is the Nusselt 
number for the flow past an impermeable plate. The 
relative variables $ and b allow the experimental and 
computed data on heat transfer to be correlated by a 
virtually universal relation which depends only weakly 
on RP and Pr numbers, the effect of which on Nu is 
taken into account by the normalizing coeflicient 
Nu,(Re, Pr). Similarly, with a suitable choice of Nu, 
one can correlate the predicted results on heat transfer 
for laminar flows in channels. 

In order to justify the selection of Nu, in the relative 
heat transfer law, let us consider the various factors 
responsible for the effect of suction and injection on 
heat transfer. As follows from equation (6), there are 
three reasons for the effect of suction (injection) on 
heat transfer: first, the change in the flow rate with 

FIG. 5. Variation of the mean bulk temperature along the 
channel at Pr = 0.7. 
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distance along the channel which is taken into account 

by the factor (1 - Pe,X/2) in the first term ; second, the 
suction (injection)-induced distortion of the axial 

velocity profile, and third, lateral convective heat 

transfer [the second term of equation (6)]. 

tiin(lbl) = $s(lbl) - jbj. (33) 

The effect of the first factor may be obviated by 
transforming to a new axial coordinate, z, according to 
(7). Then, the first term in equation (8) which stands for 
the axial heat convection will have the same form as 
that for a channel with a constant flow rate. Therefore, 
comparison between the numbers Nu and Nu, should 

be made in different cross-sections, X and X,, which 
correspond to one and the same value of z and which 

are interrelated by equation (21). 

The results of numerical calculation of the heat 
transfer modes (Fig. 7) for both the stabilized region 

and inlet section, over the whole range of Prandtl 
numbers are rather well correlated by the 
Mickly-Spalding equation 

*= 
b exp b 

exp b-l 
(34) 

which satisfies equations (32) and (33). 

The dependence of heat transfer on a change in the 
axial velocity profile characterized by the parameter R 
(or Pr at a fixed Pe,) can be determined separately by 

solving equation (20). The results of computation of 
Nu,(z) at various R are given in Fig. 6. The extreme 
cases when [RI = - L correspond to a slug velocity 
profile, F’ = 1, for suction and to a cosine profile, F’ = 

n/2 cos (nf7/2), for injection [lS]. 
Ifnow for Nu, we take Nu,(z, R) from the solution of 

equation (20), the relative heat transfer coefficient $ = 
Nu(z, Pe,, R)/NuJz, R) will then describe a direct 
influence of suction or injection on heat transfer 
caused by the lateral convection alone. Let the relative 
suction (injection) parameter be b = Pe,/Nu,(z, R). 
Then the asymptotic correlations (19) and (31) will 
take the form 

$(b+O) = 1 + 4, $(b-+ ^/ ) = b+o(b-“), 

$(b-+ ;r)=o(b”). (32) 

It should be noted that in determining $ and b for a 
stabilized heat transfer at Pr 2 0.7 one can replace 

Nu,~,,(R) by Nu,,,(R = 0) = 3.77 [12], i.e. as already 
remarked, the hydrodynamic effect of suction and 
injection on heat transfer can be neglected as com- 
pared with the thermal effect caused by convection and 
characterized by the parameter Pe,. Figure 8 compares 
the predictions of equation (34) at Nu, (j = 3.77 (solid 
line) with the numerical solution at Pr = 0.7 (dotted 
line); the crosses show the results taken from [8] for Pr 
= 0.72. The both curves virtually coincide for suction 
and agree sufficiently well for injection. With an 
increasing Pr, this agreement becomes even better. As 

seen from Fig. 6, in the case of injection the difference 
between Nu,(z) in the inlet section is small even for R 
= 0 and R = - IL. Therefore, in the case of injection 

The relative variables II/ and b have been introduced 
with the object of deriving a single relationship which 
could correlate the predicted results on heat transfer 

for all Pr. The effect of Pr (or R) on Nu is accounted 
for by the coefficient Nu,(R). As seen from (32) the 
function Ii/(b) is really independent of Pr at low and 
high values of b. Since IC/(b) does not depend on Pr 
within the whole range of the parameter b, then, by 

equation (16), the following condition should be 
satisfied 

-6 -4 -2 0 2 4 6 

FIG. 7. Dependence of the relative heat transfer coefficient on 
the parameter h. 

flu, 

40 

3- - 45 

h&o 
2- 

J/J 

- f0 

t- 5 

I I I I I I 

FIG. 8. Dependence of Nu on Pe, over the thermally sta- 
FIG. 6. Variation of Nu, along the channel. bilized region. 
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one can assume Nu~(z, R) = .nirr,(z, R = 0) for all the 
Prandtl numbers throughout the entire flow. For 

suction, this difference can be rather appreciable in the 

thermal entrance section and should be taken into 
account at small Prandtl numbers. 

We conclude by noting that the results obtained for 
a plane channel can be readily extended to a circular 
tube flow except for the range of suction velocities 
within which there is no hydrodynamically developed 
flow [18]. 
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TRANSFERT THERMIQUE DANS UN ECOULEMENT LAMINAIRE EN CONDUITE AVEC 
SUCCION OU INJECTION UNIFORME 

RCsume~On etudie le transfert thermique dans un boulement laminaire et incompressible a proprittts 
constantes dans un canal bidimensionnel a parois poreuses isothermes. On obtient des solutions 
asymptotiques de I’equation de I’energie pour des petits et des grands nombres de P&let et des grands 
nombres de Prandtl. Les resuhats calcules du nombre de Nusselt local dans la region thermiquement 
stabilisee et S I’entree sont generalisis pour tous les nombres de Prandtl par une relation unique. 

WARMEUBERGANG BE1 LAMINARER STRC)MUNG IN EINEM EBENEN 
KANAL BE1 GLEICHFC)RMIGER ABSAUGUNG ODER EINSPRITZUNG 

Zusammenfassung-Betrachtet wird der Wlrmeilbergang bei ausgebildeter laminarer inkompressibler 
Stromung mit konstanten Stoffwerten in einem zweidimensionalen Kanal mit porosen Wgnden, die 
konstante Temperatur haben. Einige Nlherungslosungen der Energiegleichung fur kleine und grol3e 
PeclettZahlen im Wandbereich sowie groBe PrandtLZahlen werden erhalten. Die berechneten Ergebnisse 
der Grtlichen Nusselt-ZahllVerteilung sowohl in den Gebieten der thermischen Stabilisierung als such im 
Kanaleintrittsbereich werden fur alle Prandtl-Zahlen durch eine einzige Beziehung in Form des relativen 

W~rme~~rgangsge~tzes allgemeing~ltig wiedergegeben. 

TEfUIOOSMEH HPM JIAMMHAPHOM TEqEHMM B HJlOCKOM KAHAJIE 
C PABHOMEPHbIM OTCOCOM M_JlH BAYBOM XWAKOCTM 

Annorauna - PaccMaTpwsaeTcr rennonepeuoc nps JlaMiiHapHOM pa3BHTOM TeqeHm HecxKsMaeMoti 

mllDKOCTH C nOCTOR”Hb,MW @,SH’,eCKHMH CBOikTBaMH B I’UIOCKOM KaHa.“C C npOHHL,aeMbIMH CTeHKaMII. 

UMe,OI”WMN “OCTORHHyfO TeMne,,ZlTyp,‘. ~OJ,)‘YeHbI aCHMrlTOTHYeCKMe peL”eHHS YpaBHeHBI 3HeprtfW 

rrpa Manbrx H 6onbmex qncnax flexne nna noroxa yepea creriky M nps 6onbumx sacnax flpaunrnn. 
PC3,VbTaTbI YACJ!eHHbIX ~CVeTOB paC”&leIleJleHEiS JlOKaJlbHOrO qWCJIa HyCCeJIbTa KBK B o6nacTis 

TennoBofi cra6ene3anair, ‘rax rr BO BXO~HOM ysac-rxe aan Bcex WiCeJI Hpannrna o6o6marorca enwHofi 

3aEWCHMOCTbH) B +OpMC OTHOCATeJ,bHOrO 3aKOHa TerUIOO6MeHa. 


